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Abstract: Polarimetric radar data (PRD) have potential to be used in numerical weather prediction
(NWP) models to improve convective-scale weather forecasts. However, thus far only a few studies
have been undertaken in this research direction. To assimilate PRD in NWP models, a forward
operator, also called a PRD simulator, is needed to establish the relation between model physics
parameters and polarimetric radar variables. Such a forward operator needs to be accurate enough
to make quantitative comparisons between radar observations and model output feasible, and to be
computationally efficient so that these observations can be easily incorporated into a data assimilation
(DA) scheme. To address this concern, a set of parameterized PRD simulators for the horizontal
reflectivity, differential reflectivity, specific differential phase, and cross-correlation coefficient were
developed. In this study, we have tested the performance of these new operators in a variational DA
system. Firstly, the tangent linear and adjoint (TL/AD) models for these PRD simulators have been
developed and checked for the validity. Then, both the forward operator and its adjoint model have
been built into the three-dimensional variational (3DVAR) system. Finally, some preliminary DA
experiments have been performed with an idealized supercell storm. It is found that the assimilation
of PRD, including differential reflectivity and specific differential phase, in addition to radar radial
velocity and horizontal reflectivity, can enhance the accuracy of both initial conditions for model
hydrometer state variables and ensuing model forecasts. The usefulness of the cross-correlation
coefficient is very limited in terms of improving convective-scale data analysis and NWP.

Keywords: polarimetric radar; data assimilation; three-dimensional variational system; WRF

1. Introduction

The accuracy of the initial conditions of numerical weather prediction (NWP) models
has a great impact on their forecast results, especially for high-resolution NWP. To build
up the initial hydrometeor information which is the key to successful simulating and
forecasting of convective storms, the inevitable process known as “spin-up” is needed for
NWP models [1]. In order to reduce the negative influence of “spin-up” on the forecast
skill of short-lived convective storms, Doppler weather radar observations, including
the horizontal reflectivity (ZH) and radial velocity (Vr), are commonly used to improve
the initial condition with advanced data assimilation (DA) methods, such as the three-
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dimensional variational (3DVAR) method [2–7], the four-dimensional variational (4DVAR)
method [8–12], and the ensemble Kalman filter (EnKF) [13–18].

The detection of additional measurements representing the microphysical character-
istics of precipitation systems, such as the differential reflectivity (ZDR), cross-correlation
coefficient (ρhv), and differential phase (φHV), which is the range integral of the specific
differential phase (KDP), benefits from polarimetric radar technology that has been widely
concerned and developed rapidly after decades of effort. Nowadays, polarimetric radars
are deployed and applied globally; in the U.S., for instance, the national radar network of
WSR-88D has been upgraded with dual-polarization capability, and polarimetric radar data
(PRD) are available nationally [19,20]. The PRD has been also successfully used in quan-
titative precipitation estimation (QPE) [21–24], hydrometeor classification (HC) [25–27],
microphysics retrieval [28–31] and severe weather identification [32–35]. These mentioned
advantages prompt us to further explore the possibility of assimilating PRD into NWP
models to improve weather forecasts, especially for the prediction of convective-scale
weather.

A forward observation operator, also known as the PRD simulator, is needed to
establish the relation between model state variables and PRD for their assimilation in
NWP models. Many polarimetric radar rain estimators have been developed and used for
QPE [21,29,30]. These relations have also been extended for ice phases including snow and
ice [36,37]. Because of the complex nature and nonlinear interaction in mixed phases, these
aforementioned single species estimators are unable to fully establish the relation between
the multiple species of model state variables and PRD for DA use.

To use PRD in the DA process of improving the accuracy of the initial conditions, or
obtain the simulated PRD from model microphysics state variables, Pfeifer et al. [38] and
Jung et al. [39] (hereafter J08) developed their own PRD simulators, respectively. Both
studies include the contribution of ice and melting species to polarimetric parameters,
but the former considers the attenuation effect of radar beams as well, while the latter
emphasizes the important influence of melting ice particles. Then, Jung et al. [40] first
directly assimilated PRD using the ensemble square-root Kalman filter (EnSRF) with a
single-moment (SM) microphysical parameterization (MP) scheme, and then attained the
improved analysis of the storm when polarimetric variables were assimilated. Applying
rigorous scattering calculations via the T-matrix method, a more accurate and numerically
integrated observation operator was developed by Jung et al. [41] (hereafter J10). Compared
the simulation performance of J10 under SM and double-moment (DM) MP schemes, Jung
et al. [42] found that some realistic polarimetric signatures reported in observational studies
such as ZDR arc, midlevel ZDR, and ρhv ring [23,33] can only be reproduced by employing
a DM MP scheme.

Li and Mecikalski [43,44] used empirical relations and retrieved the rain water mixing
ratio from ZDR [45] and KDP [46], respectively, and then assimilated them in the Weather
Research and Forecasting (WRF) model using the WRF 3DVAR system. The consequences
demonstrate the benefits of utilizing polarimetric variables to improve the initial condition
and even short-term forecasts for mesoscale convective systems (MCSs). Then, Li et al. [47]
developed an ice-phase operator embedded in the WRF 3DVAR system for assimilation
of KDP, which can also additionally adjust solid water (cloud ice and snow) through DA.
Consequently, a positive impact of extra KDP assimilation on analysis fields of rainwater in
the lower troposphere and snow in the mid- to upper troposphere for an MCS was found.
Aimed at applying J08 under the variational DA framework, Wang and Liu [48] rebuilt an
operator named RadZIceVar (a package containing a reflectivity forward operator with
its associated TL/AD operators together) and indicated its successful implement in DA
use and significant improvement on short-term (2-5 h) precipitation forecast. However, the
direct assimilation was applicable for ZH only, and assimilation of polarimetric variables
was not supported.

Meanwhile, using J08 with SM and DM MP schemes, Putnam et al. [16] noted several
microphysics biases with the help of simulated PRD through qualitative and quantitative
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verification of ensemble probabilistic forecasts in a real case. Subsequently, by establishing
look-up tables to increase the calculation efficiency of J10 during the DA procedure, Putnam
et al. [17] first implemented the direct assimilation of ZDR through the EnKF method for
a real supercell case in the literature. Through a series of observing system simulation
experiments (OSSEs) of an idealized supercell storm, Zhu et al. [18] investigated the impact
of assimilating ZDR within an EnKF framework by using J10 coupled with a DM MP
scheme, and also discussed the potential influence of updating hydrometeor number
concentrations for DA effect. Their conclusions show that the assimilation of ZDR can
improve the accuracy of analyzed hydrometeor fields in terms of pattern and intensity,
and that updating the number concentrations with mixing ratios is important for deciding
whether the benefit of assimilating ZDR can be preserved. However, they are all limited to
the use of partial PRD for assimilation, and significant errors in the magnitude of analyzed
PRD do exist, indicating that the operational application of PRD assimilation remains
challenging.

In addition, some polarimetric signatures found in convective storms provide the
opportunity for indirect assimilation of PRD. Using the Advanced Regional Prediction
System (ARPS) cloud analysis module [5,49,50], Carlin et al. [51] managed to assimilate PRD
through the detection of ZDR column signatures [33,52], which often occur in the strong
updraft region within intense thunderstorms, to modify the temperature and moisture
of the ARPS model. Encouraging results were obtained with improved analyses (more
coherent updraft) and forecasts (more realistic reflectivity structures with better skill scores)
compared to the original cloud analysis scheme without polarimetric information included.
There are limits to the widespread use of this approach, however, due to the absence of ZDR
columns in relatively weak precipitation systems and its high dependence on empirical
relationships between model state variables and PRD.

Recently, Zhang et al. [53] (hereafter Z21) developed a new set of simplified and
parameterized PRD observation operators which can link NWP model state variables
and PRD for DA use, and verified its validity and applicability by applying an ideal case
and a real case respectively. They found that the parameterized operators yield results
consistent with that of rigorous calculation in J10. However, Z21 increased computational
efficiency significantly, resulting in costs less than one percent of the computing time of J10
to complete the same task, which makes it more suitable for DA applications. Thus, in this
study, the applicability of Z21 is investigated under a variational DA framework, and the
different DA effects of each polarimetric variable are studied by conducting various OSSEs.

The rest of this paper is organized as follows. The new parameterized PRD operators
are briefly reviewed in Section 2 and the overview of the 3DVAR DA system is provided in
the following section. In Section 4, the experimental design is given, and some preliminary
experiment results are discussed in Section 5. A summary and conclusions for this study
are presented in the last section.

2. Polarimetric Radar Observation Operator
2.1. Microphysics Models and Parametrization

SM and DM MP schemes are commonly used in NWP models [54–58]. In SM simula-
tions of NWP models, water mixing ratios (q), which is directly relevant to water content
(W = ρaq, where ρa is the air density), is the only prognostic physics variable for hydrom-
eteor physics. For DM MP schemes, the number concentration (Nt) and the water mixing
ratio (q) are both predicted variables. For a given two-parameter drop/particle size distri-
bution (DSD/PSD) model and a specified hydrometeor x, both Ntx and qx can be converted

to mass-weighted diameter (Dmx = 4
(

ρaqx
πρx Ntx

)1/3
) and water content (Wx = ρxqx); then,

many other related quantities such as DSD/PSD parameter, rainfall rate and reflectivity
are calculated by these two state variables. The detailed description of the derivation can
be found in Z21.
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2.2. Parameterized PRD Operators

Polarimetric radar variables (ZH, ZDR, KDP, ρhv) are expressed by the integrals of
DSD/PSD weighted by the scattering amplitudes [59,60]. The scattering amplitudes are
normally calculated by the T-matrix method, and the integrals are calculated numerically
for accurate results. This was done in J10. However, the complex integral form and
resulting expensive computational cost make it not convenient for variational DA use,
which usually needs the operators to be efficient and easy calculation of the derivative.

Mahale et al. [61] represented polarimetric variables as simple functions of water
mixing ratio qr and mass/volume-weighted diameter Dm in the polynomial form for rain.
In the case of ice phases and mixtures such as dry/melting snow, hail, and graupel, the
calculation and parameterization are more complicated than those of rain induced by the
increased variability in density during the melting stage and irregular shape, as well as
the orientation of the particles. For simplification, a simple function of the percentage of
melting (γx) as following is used in Z21 to calculate the particle density ρx for the melting
hydrometeor species x:

ρx = ρdx

(
1− γ2

x

)
+ ρwγ2

x, (1)

where γx = qr/(qr + qx) (the same as J08), ρdx stands for the dry/pure state of ice
hydrometeor corresponding to the melting state, and ρw is the density of water. Except
for the mean axis ratio and standard deviation of the canting angles, Z21 makes some
adjustments to allow a larger dynamic range of ZDR and ρhv. The shape and orientation of
hydrometer particles follow the modeling and representation documented in J08. Similar
to rain, for a given ice or mixed phase species x, including snow, hail, graupel, and
their melting parts, PRD variables are calculated for a set of Dm at a given γx, and then
parameterized as functions of Dm as follows:

Zh(x) ≈ Zx

[
αZ0(γx) + αZ1(γx)Dm + αZ2(γx)D2

m + αZ3(γx)D3
m

]2
, (2)

Zdr(x) ≈ αd0(γx) + αd1(γx)Dm + αd2(γx)D2
m, (3)

KDP(x) ≈ ρaqwx(αK0(γx) + αK1(γx)Dm + αK2(γx)D2
m)/ρx, (4)

ρhv(x) ≈ αρ0(γx) + αρ1(γx)Dm + αρ2(γx)D2
m, (5)

where the reflectivity factor is Zx = 11.25× 10−3 ρaqx
πρx

D3
m (Dm, unit: mm). The fitting

coefficients associated with γx are provided in Tables 1 and 2 of Z21, and more detailed
descriptions for calculations, assumptions, and result analysis can also be found there.

3. The 3DVAR DA System

To test the assimilation performance of Z21 in a variational DA scheme, in this study,
a 3DVAR DA system designed especially for radar data assimilation at the convective
scale is employed. This 3DVAR system was initially developed at the Center for Analysis
and Prediction of Storms (CAPS) and subsequently refined at National Severe Storms
Laboratory (NSSL). The standard 3DVAR cost function can be written as follows [3]:

J(x) =
1
2

(
x− xb

)T
B−1

(
x− xb

)
+

1
2
[H(x)− yo]TR−1[H(x)− yo] + Jc(x). (6)

The cost function defined above contains three terms on the right-hand side. The first
term is the background term, which defines the departure of the analysis vector x from
the background vector xb weighted by the inverse of the NWP model background error
covariance matrix B, where the analysis vector x contains the following variables: the three
wind components (u, v, and w) and the mixing ratios of hydrometeors (rain water, snow,
hail, graupel, cloud water, cloud ice). The background error covariance matrix is modeled
by the product of a diagonal matrix of the standard deviation of the background error and
a spatial recursive filter [3]. The standard deviations for the model variables are derived
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from the statistics of the Rapid Update Cycle (RUC) model’s 3 h forecasts over several
years from 2001 to 2004 [62]. The second term is the observation term, which defines the
departure of the analysis vector x from the observation vector yo, where H(x) is the forward
operator which builds a “bridge” between the model state variables and observation data.
In this study, the new PRD operators (Z21), which can use both the mixing ratio and the
number concentration from a DM MP scheme, will be discussed later. In the second term,
R is called the observation error covariance matrix which includes both instruments and
representativeness errors. The observation errors’ standard deviation for PRD variables
(Vr, ZH, ZDR, KDP, and ρhv) is specified empirically as 2 m/s, 3 dBZ, 0.5 dB, 0.5 ◦/km, and
0.1 respectively. Finally, as the third term on the right-side, Jc(x) represents the dynamic
or equation constraints. This term has proved to be very important, particularly for this
convective-scale 3DVAR system. For example, the mass continuity equation imposed as a
weak constraint is helpful in producing more suitable wind analysis [2,3].

Radar radial velocity Vr is regarded as a crucial variable in the DA procedure [3,4,10]
because it provides important wind field information and dynamic characteristics of the
precipitation event. In this 3DVAR DA system, the forward observation operator for radial
velocity considering the effects of the Earth’s curvature is expressed as:

Vr =
dh
dr

w +
ds
dr

(u sin ϕ + v cos ϕ), (7)

where h and s is radar beam height and distance, respectively, over and along the curving
Earth’s surface, r is the radial slant range, and ϕ is the radar azimuth angle. The 4/3-
effective Earth radius mode is assumed to follow for the propagation of radar beams [59].
The effect of hydrometeor fall velocity is neglected here, and will be considered in the
follow-up real data case study.

For PRD, after the calculations for each species x available in specified MP scheme
through Equations (2)–(5), the final variables for the pixel are obtained by summing the
contributions from all species as follows:

ZH = 10 log[∑ Zh(x)], (8)

ZDR = 10 log
[

∑ Zh(x)
∑ Zh(x)/Zdr(x)

]
, (9)

KDP = ∑ KDP(x), (10)

ρhv =
∑ Zh(x)Z−1/2

dr (x)ρhv(x)

∑ Zh(x)Z−1/2
dr (x)

. (11)

For the 3DVAR method used here, considering the variations of observational spacing
existing among different observations, multiple analysis passes are usually used to analyze
different observation types with different filter scales. Indeed, applying multiple-pass with
a recursive filter is proven superior to the common single-pass method theoretically [6,43].
Hence, in this study, each PRD variable is analyzed in a separate pass.

The new operators have been proved efficiently in PRD simulation and therefore
particularly suitable for DA purposes (Z21), including both variational and ensemble
DA. In such applications, the TL/AD operators, coupled with the forward operators, are
required for the variational assimilation, which are not necessarily found in the EnKF [63].
As a consequence, complex operators such as those used in J10 are more applicable to
be employed through the EnKF method for DA use. Despite this difficulty, due to the
simple polynomial form of Z21, the programming of corresponding TL/AD operators is
implemented smoothly according to the rules of adjoint code construction [64,65].
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The AD operator is the transpose of the TL operator. Therefore, how well TL operator
approximates the nonlinear forward operator determines how valid the gradient of the
cost function is. Following [66], to verify the correctness of the TL operator, one can define
a function R(a), given by

R(a) =
f (x0 + adx)− f (x0)

a f ′(dx)
, (12)

where f (x) and f ′(x) are forward, tangent linear operator respectively. The x0 represents a
random picked base state and dx represents a perturbation state. Here, R(a) is calculated
over all points in the domain. According to the theory, if R(a) in Equation (12) is close to
1 for any small values of a (see Table 1), meaning that the TL operator approximates the
nonlinear forward operator well. The test results of the TL operator are listed in Table 1,
as a keeps decreasing from 1 to 1E-14, the R(a) values for all polarimetric variables (R_ZH,
R_ZDR, R_KDP and R_ρhv) are approaching 1 uniformly and steadily in the case of double
precision. However, when a goes down to an extra small value, the R(a) starts to increase,
which is caused by the rounding error of the calculator floating-point arithmetic operation.
The above outcomes enable us to conclude that the assimilation system with the Z21
integrated passes the validity test and that the subsequent experimental research can be
carried out reasonably.

Table 1. Results of test for Z21 TL/AD operators.

α R_ZH R_ZDR R_KDP R_ρhv

1E0 0.699045165073124 0.483074981957829 1.02528819132801 0.490697018550403
1E-1 0.954886643047696 0.884597784411837 0.995278460334951 0.931147252389009
1E-2 0.995227804958050 0.987614013476037 0.999521333803539 0.992331436494260
1E-3 0.999519983964757 0.998752196825316 0.999952065828401 0.999224559666156
1E-4 0.999951970230481 0.999875126965556 0.999995205904266 0.999922370046164
1E-5 0.999995196913338 0.999987513140014 0.999999520577862 0.999992241080020
1E-6 0.999999520221590 0.999998772473737 0.999999952019359 0.999999175462863
1E-7 0.999999959777296 1.00000006087191 0.999999997600995 0.999999828029847
1E-8 1.00000001030094 1.00000292308563 1.00000002346292 1.00001425319475
1E-9 0.999999336652349 1.00002350529665 1.00000031440953 0.999973038437884
1E-10 1.00001449374567 1.00003817816193 0.999999667861502 0.999114397669863
1E-11 1.00019974710850 1.00046831421264 1.00001583156215 0.999457853977071
1E-12 1.00036815925652 0.995141863117389 1.00004815896344 0.996023290904985
1E-13 1.01047288813790 1.08940999759569 1.00214944004741 0.686912614417231
1E-14 1.01047288813790 1.38688726631185 1.01831314069334 3.43456307208615

4. Experimental Design

As discussed previously, PRD shows potential for enhancing storm simulations in
terms of intensity and structure and ensuing short-range forecasts [16–18,40,42–44,51].
However the forward operators used thus far are either too simple [43,44] or too compli-
cated [39,41]. The recently proposed parameterized PRD operators in Z21 can be used in
different microphysics schemes and are relatively efficient.

In this study, a fully compressible and non-hydrostatic Advanced Research Weather
Research and Forecasting (WRF-ARW) model (version 3.7.1) is used in a three-dimensional
space for a supercell storm simulation. The horizontal resolution is 1 km with 121 grid
points in the east-west and north-south directions. Simultaneously, 51 stretched levels up
to 20 km (50 hPa, approximately) above ground level (AGL) are chosen. Open boundary
conditions for the lateral and Rayleigh damping for the top boundary are used in this
idealized case. The whole integration of the WRF-ARW model for simulation is 3 hours.

A modified sounding from a classic supercell event that occurred on 20 May 1977 in
Del City, Oklahoma is used to provide the environmental field of the storm. A thermal
bubble with a potential temperature perturbation of 3 K is added in the truth field to
initiate convection [14,67–69]. This warm bubble is centered at the location of (x = 90 km,
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y = 40 km, z = 1.5 km) and has a 10 km horizontal radius and 1.5 km vertical radius inside
the model domain. The Milbrandt and Yau scheme [55], a DM MP scheme consisting
of the predicted mixing ratios of six-class hydrometeors, such as cloud water (qc), cloud
ice (qi), rain water (qr), snow (qs), hail (qh), and graupel (qg), and their corresponding
number concentrations (Nc, Ni, Nr, Ns, Nh, and Ng, respectively), is applied in description
of microphysical processes in the idealized case. The time step for the integration of the
prognostic equations is set to be 3 seconds. The standard 1.5-order TKE closure scheme is
chosen for the turbulence parameterization, and other configurations are the same as that
of Ge et al. [67].

During the 3 h truth simulation, the cloud forms around 10 min, rain water appears at
15 min, ice hydrometeors are generated at 20 min, and a single convective storm develops
in the first 30 min (not shown). The storm reaches its mature stage at 45 min, then starts to
split, evolves and slightly weakens. At 2 hours into the model integration, the right-splitting
cell tends to dominate, as indicated by a clear hook echo and strong updraft.

Figure 1 shows the cycled DA and forecast scheme employed in OSSEs. Based on
the truth simulation with WRF, all polarimetric radar observations (Vr, ZH, ZDR, KDP, and
ρhv) can be simulated and used in the iterations of 3DVAR analysis to update the model
state variables (ua, va, wa, and qa

x). After the analysis step, a 5 min forecast procedure is
performed and the result is the background field (ub, vb, wb, and qb

x) as the input of the DA
analysis step in the next cycle. Considering the mixing ratios of precipitation are too small
at the early stage of storm initiation, the idealized data are generated after the 30 min of
model integration. Two assumed S-band radars are located in the southeast and southwest
corner, respectively, and are performed on the VCP11 scan mode of WSR-88D radar (14
tilts from 0.5◦ to 19.5◦). Idealized PRD is derived from the truth simulation output using
the forward operators in Equations (7)–(11).

Figure 1. Illustration of DA and forecast cycles used for the idealized case study. Observations repre-
sent the assimilated PRD including radar radial velocity, reflectivity, and all polarimetric variables
simulated from the truth simulation output of the WRF run. The observations are assimilated by the
3DVAR system based on the background field of previous 5 min forecast result.

All OSSEs presented in this study are listed in Table 2. The control run assimilating Vr
and ZH data, labeled as ExpVrZh, is considered as a reference for comparison purposes.
Sensitivity experiments ExpVrZhZdr, ExpVrZhKdp, and ExpVrZhRhv are the same as
the control run but with the additional assimilation of ZDR, KDP, and ρhv, respectively.
ExpVrZhPol is a special run with all PRD assimilated. These sensitivity experiments are
performed to help understand the impact of PRD on the analysis of hydrometer variables.
Therein, the number concentrations of hydrometeors will not be updated during the DA
cycles on account of the complexity introduced by their wide dynamic range (from 0 to
above 1E12 m-3) and the problem of a significant increase of the degrees of freedom. The
explanation of all abbreviations used in this paper can be found in Appendix A.



Remote Sens. 2021, 13, 3060 8 of 24

Table 2. List of experiments.

Experiments Observations Description

ExpVrZh Vr+ZH Vr and ZH assimilated
ExpVrZhZdr Vr+ZH+ZDR As ExpVrZh with additional ZDR assimilated
ExpVrZhKdp Vr+ZH+KDP As ExpVrZh with additional KDP assimilated
ExpVrZhRhv Vr+ZH+ρhv As ExpVrZh with additional ρhv assimilated
ExpVrZhPol Vr+ZH+ZDR+KDP+ρhv As ExpVrZh with all PRD assimilated

5. Results of 3DVAR Analysis
5.1. The Root Mean Square Error Analysis

The Root Mean Square Errors (RMSEs) are commonly used as a criterion for the
accuracy judgment of DA [14,18,40,68,69]. To be consistent with the previous requirement
of ZH assimilation, the RMSEs of analysis and forecast displayed in Figure 2 are only
calculated over precipitation grids with ZH exceeding 10 dBZ.

Figure 2. The mean RMSEs of the forecasts and analyses throughout the 5 min 3DVAR DA cycles for
ExpVrZh (black line), ExpVrZhZdr (red line), ExpVrZhKdp (blue line), ExpVrZhRhv (cyan line), and
ExpVrZhPol (purple line), respectively, averaged over grid points where the observed (simulated)
ZH is greater than 10 dBZ. (a) u, (b) v, (c) w, mixing ratios of (d) cloud water qc, (e) cloud ice qi,
(f) rain water qr, (g) snow qs, (h) hail qh, and graupel qg, and the same calculating procedure as truth
simulations for polarimetric radar variables (i) ZH, (j) ZDR, (k) KDP, and (l) ρhv via Z21 forward
operators.

At a first glance of Figure 2, for all model state variables and simulated radar observa-
tions, the RMSEs of analysis and forecast have a generally decreasing tendency over time
for each OSSE. Since number concentrations are not updated with mixing ratios during the
DA process, there may be a potential imbalance between them, leading to fluctuations in
the early DA stages. Compared to ExpVrZh (black line), ExpVrZhZdr (red line) produces
slightly better analyses and forecasts for most variables, where more pronounced improve-
ments occur in the last few cycles, especially in ice hydrometeor species qi (Figure 2e),



Remote Sens. 2021, 13, 3060 9 of 24

qh, and qg (Figure 2h). Since KDP is most sensitive to the presence of liquid water, the
RMSE of qr (Figure 2f) of ExpVrZhKdp (blue line) has the most obvious difference. The
better convergence through the whole DA cycle suggests that the satisfied rain water field
much closer to the truth can be analyzed with additional KDP assimilation. In fact, as with
ExpVrZhZdr, it also plays a positive role in obtaining a smaller RMSE in the last few cycles
for qi, qh, and qg. For ExpVrZhRhv (cyan line), the relatively distinct variations only occur
in the first or last few cycles, but as a whole, its RMSEs almost follow that of ExpVrZh with
no significant discrepancies, indicating the limited effect of ρhv assimilation.

In terms of observed radar variables, the RMSEs of ExpVrZhZdr converge better
and faster, indicating its simulated PRD is superior to that of ExpVrZh, especially for
ZDR (Figure 2j) and ZH (Figure 2i). The above conclusions agree well with those of Jung
et al. [40], except for benefits shown earlier in DA cycles here. This is largely the same as
the result of Zhu et al. [18]. Apparently, ExpVrZhKdp produces consistently better KDP
(Figure 2k) in both analysis and forecast cycles, as expected. Moreover, there are some
subtle advancements of ZH in the last few cycles, but no contributions to the simulation
of ZDR and ρhv (Figure 2l). As confirmed by the variation of the RMSEs, the assimilation
of ρhv cannot bring benefits in observation space as well. Although both ZH and ρhv can
converge reasonably, the influence of ρhv assimilation is too small to be noticed, which may
be caused by the relatively small variation range of itself (on the order of 0.01). Noted that
the reverse changing problem (the RMSE decreases in the forecast cycle, but increases in
the corresponding analysis cycle) occurring in ZDR and KDP can be resolved by assimilating
the corresponding PRD variable.

In the aspect of RMSEs, different abilities and effects in improving the accuracy of the
model state variables and simulation of PRD have been presented for each polarimetric
variable. Superior and more balanced results are expected to be achieved by jointly
assimilating all PRD. As shown in purple line in Figure 2, although some fluctuations arise
in w (Figure 2c), qs (Figure 2g), qh and qg at certain cycles, the best convergent trends are
obtained in ExpVrZhPol for almost all kinds of hydrometeors, especially in later DA cycles.
For simulated PRD, ExpVrZhPol also acquires better RMSE convergence compared to
other experiments, especially for ZDR and ρhv. Actually, with respect to most variables, the
sharpest downward variation range occurring in the first cycle of ExpVrZhPol indirectly
reveals the greatest potential capability of revising the model analysis field.

5.2. Evaluation of PRD Assimilation

The impacts of PRD assimilation on the horizontal distribution of intensity and polari-
metric characteristics of the simulated storm are further analyzed in Figures 3–6. Compared
with the true ZH (Figure 3a), all OSSEs represent the hook echo signature and the strong
ZH core at the leading edge of the storm. Among them, ExpVrZh (Figure 3b) and Ex-
pVrZhRhv (Figure 3e) have very similar results with obviously high ZH (greater than
15 dBZ overestimated) in the rear stratiform precipitation area (hereafter SPA). However,
the ZH intensity described by ExpVrZhZdr (Figure 3c) is superior to them, both in the front
convective precipitation area (CPA) and the rear SPA. However, the weak echo (<20 dBZ)
on the northern edge is over-adjusted to deviate from the truth. On the contrary, although
the weak echo is well analyzed, a much smaller ZH exists in the SPA of ExpVrZhKdp
(Figure 3d). In terms of intensity and structure, the overall result of ExpVrZhPol (Figure 3f)
is much closer to the truth, particularly in the echo edge and rear SPA, except for a certain
overestimation in the CPA. There is a small ZDR patch (<1 dB) in the southeast corner of the
main storm in ExpVrZh (Figure 4b), and also the same in ExpVrZhRhv (Figure 4e). Beyond
that, the ZDR in the SPA is significantly smaller than the truth (Figure 4a), with the largest
difference over 1.5 dB. ExpVrZhKdp (Figure 4d) has even worse simulation with much
smaller ZDR. However, the intensity of ZDR in ExpVrZhZdr (Figure 4c) is much enhanced
in the fore-mentioned two underestimated areas, particularly in the SPA. However, to
some extent, overestimation persists in the weak echo at the edge of storm. ExpVrZhPol
(Figure 4f) equally gives the best analysis among all OSSEs, except for the underestima-
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tion that occurred in the south-east of the storm. Although the dominant distribution of
KDP is well exhibited in ExpVrZh (Figure 5b), ExpVrZhZdr (Figure 5c) and ExpVrZhRhv
(Figure 5e) without KDP assimilation, the central strength of the leading edge and the
hook echo are clearly weaker. The assimilation of KDP is beneficial that the simulated
KDP shown in Figure 5d is perfectly matched with the truth (Figure 5a) in both intensity
and structure. Undoubtedly, as a result of additional assimilation of KDP, ExpVrZhPol
(Figure 5f) also has a similar good performance to ExpVrZhKdp. Based on the simulated
result of ExpVrZh (Figure 6b) which is pretty close to the true ρhv (Figure 6a), ExpVrZhRhv
(Figure 6e) mainly brings improvement in details, whereas ExpVrZhZdr (Figure 6c) and
ExpVrZhKdp (Figure 6d) make further overestimation of ρhv in certain areas. Affected by
ZDR and KDP, ExpVrZhPol (Figure 6f) does not exhibit better ρhv distribution, but instead
has an underestimated area (<0.9).

Figure 3. The reflectivity ZH (unit: dBZ) at 1 km altitude at 80 min for (a) truth, and analysis fields of
(b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and (f) ExpVrZhPol, respectively.
The two assumed radars are located at the bottom-left and top-right corners as shown in Figure 3a.
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Figure 4. The same as Figure 3, but for the differential reflectivity ZDR (unit: dB) of (a) truth,
and analysis fields of (b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and (f)
ExpVrZhPol, respectively.

Figure 5. The same as Figure 3, but for the specific differential phase KDP (unit: ◦/km) of (a) truth,
and analysis fields of (b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and (f)
ExpVrZhPol, respectively.
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Figure 6. The same as Figure 3, but for the cross-correlation coefficient ρhv (dimensionless) of
(a) truth, and analysis fields of (b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and
(f) ExpVrZhPol, respectively.

To further evaluate the simulation of the vertical structure of the storm in different
DA schemes, the vertical slices of analyses through the intensity core and hook echo region
(black dashed line in Figure 3a) are shown in Figures 7–10. For ZH, the whole structure
and extended height of the strong echo are both close to the truth (Figure 7a), with the ex-
ceptions of the ring-shape core (>55 dBZ) in ExpVrZh (Figure 7b), ExpVrZhZdr (Figure 7c),
and ExpVrZhRhv (Figure 7e). Additionally, ZH in these OSSEs are overestimated markedly
in the middle level of the forward flank (5 km horizontally, the same hereafter), which
is reduced properly in ExpVrZhKdp (Figure 7d). Additionally, the overestimation in the
low level of the rear SPA (30~40 km) has been alleviated by assimilating ZDR, such that
the intensity is much closer to the truth and the echo goes from ungrounded to grounded.
ExpVrZhRhv shows no enhancement compared with ExpVrZh, or even worse results
(overestimation in some areas, Figure 7e vs. Figures 7a and 7b). More than that, the
ahead-developing convective cell (~6 km) and inner strong echo of the main storm are
both better described in ExpVrZhKdp and ExpVrZhPol (Figure 7f). In comparison with
the truth (Figure 8a), the signature of the ZDR column (~5 km) related to the updraft
within the storm is more evidently discerned in ExpVrZdr (Figure 8c) and ExpVrKdp
(Figure 8d), whereas the sagged high ZDR area (~25 km) attributed to the existence of a
small number of large raindrops is well retained in ExpVrZh (Figure 8b), ExpVrZdr, and
ExpVrRhv (Figure 8e). Modifications of amplitude and shape of ZDR can be noticed in
the tail (~35 km) in ExpVrZhZdr and ExpVrZhKdp. With respect to above features, the
best analysis result in terms of intensity and structure is given in ExpVrZhPol (Figure 8f).
ExpVrZhKdp reveals an extremely high degree of similarity with the truth (Figure 9d vs.
Figure 9a), including the KDP core associated with high liquid water content (LWC) within
the storm, an overshooting structure linked to the strong updraft rushing through the
melting layer, and even the small KDP area hanging ahead. The effect of KDP assimilation
is maintained in ExpVrZhPol (Figure 9f), showing almost identical distribution charac-
teristics to that of ExpVrZhKdp. Comparatively, other OSSEs (Figure 9b,c,e) nearly fail
to reproduce these mentioned signatures. The melting layer associated with the melting
hydrometeors is precisely described by a ρhv drop in these OSSEs, but with a wider melting
band and a few underestimated areas above. Other than a small positive contribution from
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the ρhv assimilation (Figure 10e) in the low-value area located in the middle level of the
forward edge (~5 km) of the storm, there are no notable improvements in the distribution
of analyzed ρhv for different OSSEs.

Figure 7. Vertical cross-sections of reflectivity ZH along the black dashed line in Figure 3a for (a)
truth, and analysis fields of (b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and (f)
ExpVrZhPol, respectively.

Figure 8. The same as Figure 7, but for the differential reflectivity ZDR of (a) truth, and analysis fields
of (b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and (f) ExpVrZhPol, respectively.
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Figure 9. The same as Figure 7, but for the specific differential phase KDP of (a) truth, and analysis
fields of (b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and (f) ExpVrZhPol,
respectively.

Figure 10. The same as Figure 7, but for the cross-correlation coefficient ρhv of (a) truth, and analysis
fields of (b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and (f) ExpVrZhPol,
respectively.

5.3. Evaluation of Hydrometeor Analysis

Figures 11–14 show the mixing ratios of cloud ice qi, rain water qr, hail qh, and graupel
qg in the truth and analysis fields of OSSEs, respectively, through identical vertical slices as
in Figure 7. These OSSEs with PRD assimilation partially (mainly in the right part) and
slightly (within 0.1 g/kg) strengthen qi more than that in ExpVrZh (Figure 11b), which is
still much weaker compared to the truth (Figure 11a). Besides the basic distribution of
qr, well depicted in OSSEs, the outstretched structure corresponding to the convection
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initiation ahead (~5 km) is better analyzed in ExpVrZhZdr (Figure 12c) and ExpVrZhKdp
(Figure 12d). The latter better portrays the rear (>30 km) relatively small qr (0.1~0.2
g/kg), while the former is slightly over-adjusted (>0.2 g/kg). The overshooting pattern
(~10 km) resulting from the strong updraft within the storm and suggesting the presence
of super-cooled water is clearly displayed in ExpVrZhKdp as well, completely consistent
with the truth (Figure 12a). However, the more obvious qh (Figure 13c) core (>1.8 g/kg)
and enhanced qg (Figure 14c) in the middle- (>1.5 g/kg) and upper level (>4.0 g/kg)
can be seen in ExpVrZhZdr. As expected, these mentioned benefits induced by ZDR or
KDP assimilation are also retained in ExpVrZhPol. In addition, there are many other
improvements such as the preferable descriptions of relatively small qi (<0.2 g/kg), qh
(<0.6 g/kg), and qg (<4.5 g/kg) in the upper left corner f, Figures 13f and 14f), the superior
qr analysis much closer to the truth (Figure 12f vs. Figure 12a), and so on. However, apart
from minor differences, all analyzed mixing ratios in ExpVrZhRhv are largely the same as
the corresponding ones in ExpVrZh (Figures 11e, 12e, 13e and 14e vs. Figures 11b, 12b, 13b
and 14b, respectively). Additionally, analyses of cloud water qc and snow qs yield similar
results as other hydrometeor variables, that is, qc is similar to qr, and qs is similar to other
ice species (qi, qg, and qh), which are not detailed here.

In general, the above results further demonstrate the potential positive effects of
ZDR assimilation on the analysis of solid hydrometeor particles, more benefits of KDP
assimilation in improving the simulation of rain water rather than ice hydrometeors,
and the limited usefulness of ρhv in terms of enhancing model hydrometeor analysis.
Attributing to the combined positive impacts from PRD assimilations, more comprehensive
hydrometeor analysis results in both intensity and pattern can be obtained. The conclusions
are also in accordance with the findings of RMSE analysis.

Figure 11. The same as Figure 7, but for the mixing ratio of cloud ice qi (unit: g/kg) of (a) truth,
and analysis fields of (b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and (f)
ExpVrZhPol, respectively.
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Figure 12. The same as Figure 7, but for the mixing ratio of rain water qr (unit: g/kg) of (a) truth,
and analysis fields of (b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and (f)
ExpVrZhPol, respectively.

Figure 13. The same as Figure 7, but for the mixing ratio of hail qh (unit: g/kg) of (a) truth, and anal-
ysis fields of (b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and (f) ExpVrZhPol,
respectively.
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Figure 14. The same as Figure 7, but for the mixing ratio of graupel qg (unit: g/kg) of (a) truth,
and analysis fields of (b) ExpVrZh, (c) ExpVrZhZdr, (d) ExpVrZhKdp, (e) ExpVrZhRhv, and (f)
ExpVrZhPol, respectively.

Different PRD variables have different information contents and error effects corre-
sponding to each hydrometeor. ZDR increases as the raindrop size increases or ice particles
melt. Therefore, assimilation of ZDR yields improved analysis of all hydrometeors. KDP
depends on both the raindrop size and the number concentration, hence, its assimilation
improves the analysis of qr. Since ρhv reduction occurs only in the melting/mixing regions
which have a very small percentage of the storm and it has a small dynamic range with
relatively large errors, the improvement with assimilation of ρhv is minimal.

5.4. Evaluation of Forecast

To investigate the improvement effect of modified initial conditions from different DA
schemes on model predictions, the 1 h forecasts beginning at the 120 min of a storm are
made at 15 min intervals for these OSSEs. In addition, the mean RMSEs of forecasts are
calculated as seen in Figure 2 and displayed in Figure 15. Unsurprisingly, the increasing
trend of RMSE with time is exhibited in all model state variables and simulated PRD, but
the variation characteristics for different OSSEs are still existing diversely.

Taking all parameters into account, ExpVrZhPol (purple line) generally outperforms
other OSSEs. Although the differences in the horizontal wind of u and v (Figure 15a,b)
are almost indistinguishable, it can be seen upon careful inspection that ExpVrZhPol has
a relatively low RMSE on the whole. Furthermore, except for the better performance of
ExpVrZhZdr (red line) in the intermediate stage (30-45 min) of prediction, ExpVrZhPol
also has the best overall prediction effect on vertical velocity w (Figure 15c). An analogous
situation appears in the perturbation potential temperature θ (Figure 15d) and perturbation
pressure p (Figure 15e) as well. For hydrometeors, the remarkable advancements resulting
from combined assimilation of PRD can be found in cloud water qc (Figure 15g), rain water
qr (Figure 15i), snow qs (Figure 15j), and graupel qg (Figure 15l) almost throughout the
entire prediction period, and mainly in both ends of the period for cloud ice qi (Figure 15h)
and hail qh (Figure 15k). While taken individually, with respect to RMSEs, ExpVrZhZdr has
a good performance in ice hydrometeors (qi, qh, and qg) forecasts, suggesting the potential
advantages of ZDR assimilation in increasing the prediction accuracy of ice species. Further,
due to the high sensitivity of KDP to liquid water, ExpVrZhKdp (blue line) illustrates more
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superiorities in the forecasting of water vapor qv (Figure 15f), qc, and qr. Comparatively
speaking, ExpVrZhRhv (cyan line) has fully comparable behaviors with ExpVrZh (black
line), demonstrating the limited benefits of ρhv assimilation.

Figure 15. The mean RMSEs of 1 h forecasts at a 15 min intervals initiated at 120 min for ExpVrZh
(black line), ExpVrZhZdr (red line), ExpVrZhKdp (blue line), ExpVrZhRhv (cyan line), and ExpVrZh-
Pol (purple line), respectively, averaged over grid points with observed (simulated) ZH exceeding 10
dBZ. (a) u, (b) v, (c) w, (d) perturbation potential temperature θ, (e) perturbation pressure p, mixing
ratios of (f) water vapor qv, (g) cloud water qc, (h) cloud ice qi, (i) rain water qr, (j) snow qs, (k) hail qh,
and (l) graupel qg, and simulated PRD in observation space: (m) ZH, (n) ZDR, (o) KDP, and (p) ρhv.

In observation space, ExpVrZhPol also manifests superior overall performance, thor-
oughly in ZH (Figure 15m), and mainly in the late forecast stage (after 30 min) of ZDR
(Figure 15n), KDP (Figure 15o) and ρhv (Figure 15p), which is of great significance for quanti-
tative applications of PRD (precipitation estimation, hydrometeor classification, and so on).
By contrast, ExpVrZhKdp is the second choice, having a suboptimal effect comprehensively.
It is noteworthy that the RMSEs of ExpVrZhRhv nearly coincide with that of ExpVrZh for
all PRD variables, further indicating the minor positive impact of ρhv assimilation on the
forecasts.
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6. Summary and Conclusions

In this paper, based on the new simplified and parameterized polarimetric radar
observation operators developed by Z21, the corresponding TL/AD operators necessarily
required by the variational DA procedure are constructed. The gradient check of the cost
function in the minimization step of analysis cycles proves the operators work reasonably.
In fact, as mentioned previously, the updating of number concentrations which affect the
DA effect [18] is not considered here and is worthy of further research.

To evaluate the influences of assimilating the differential reflectivity ZDR, specific
differential phase KDP, cross-correlation coefficient ρhv, as well as horizontal reflectivity ZH
and radial velocity Vr, cycled 3DVAR DA and forecast schemes are performed. The truth is
generated with a 3 h simulation of an idealized supercell storm using the WRF model. The
PRD is constructed from the idealized truth simulations via Z21 forward operators. Then,
these observations are assimilated into the WRF model at a 5 min interval with the initial
DA beginning at 30 min of model integration.

Using the experiment of assimilating both ZH and Vr as the benchmark run, OSSEs
with additional assimilation of ZDR, KDP, and ρhv, respectively, are performed to examine
the impact of each polarimetric variable on DA results. Additionally, an extra OSSE which
assimilates all PRD is conducted to see whether a more balanced result can be achieved.
The results suggest that the ZDR assimilation adjusts all model state variables to varying
degrees, and helps reduce RMSEs at almost each DA cycle. Moreover, the assimilation
process makes some polarimetric signatures, such as hook echo, ZDR column and melting
layer, more obvious, and improves the distributions of hydrometeors and observations
much closer to the truth as well. High sensitivity to liquid water of KDP is believed to be
responsible for the more improved analysis of rainwater, and the intensity and pattern
of PRD are also enhanced with additional assimilation of KDP, especially for ZH and KDP
itself. The small discrepancy between OSSEs with and without ρhv assimilation indicates
its limited ability in adjusting model state variables and improving the analysis accuracy.
In contrast, due to the accumulation of favorable DA effects of different polarimetric
variables, assimilating all PRD obtains more balanced analysis results, as expected. The
above polarimetric signatures are also well presented in observation space, and many other
improvements have been made, including the optimization of rain water analysis which
is perfectly matched with the reference truth, and better descriptions of some small value
areas in mixing ratios of cloud water, snow, and graupel. These different assimilation results
are attributed to the different information contents and error effects from PRD variables. It
is noted that these characteristics of assimilation PRD can change depending on the type of
storm and model microphysics as well as observation errors, which needs further study.
A series of prediction experiments, which initiate at the 120 min of different OSSEs and
run over a 1 h period at a 15 min interval, are conducted to further study the impact of
improved initial conditions on ensuing forecasts. The RMSEs of forecasts are calculated
and the results show that the ZDR assimilation can bring obvious benefits for forecasts of ice
hydrometeor species including cloud ice, hail, and graupel and even for the vertical wind
field and perturbation pressure in the late stage of prediction. Assimilating KDP is found
to improve the prediction of water vapor, cloud water, and rainwater, which is consistent
with its performance in the liquid water analysis. There is no visible promoting effect on
the prediction of most variables, suggesting that ρhv assimilation is not very helpful for the
improvement of NWP. Similar to analysis results, the OSSE assimilating all PRD shows a
more comprehensive performance in terms of RMSEs, having the most accurate (smallest
RMSE) results of horizontal wind field, perturbation potential temperature, cloud water,
rain water, snow, hail, and graupel in the end of forecast period. In addition, the forecasts
in observation space are also better, with higher accuracy in the second half of period.

Although these findings illustrate the potential usefulness of PRD assimilation in
improving convective-scale NWP, additional important research questions remain. A
subsequent study will apply the PRD assimilation to real data cases to assess its benefits to
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real-world forecasts. Furthermore, the feasibility and capability of this new parameterized
polarimetric radar operators under different MP schemes require investigation as well.
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Appendix A

All abbreviations and acronyms used in this paper are summarized briefly in Table A1.

Table A1. Explanation of abbreviations and acronyms used in the paper.

Abbreviation/Acronym Explanation

PRD Polarimetric radar data
NWP Numerical weather prediction
DA Data assimilation
TL Tangent linear model
AD Adjoint model

3DVAR Three-dimensional variational system/method
4DVAR Four-dimensional variational system/method
EnKF Ensemble Kalman filter
EnSRF Ensemble square-root Kalman filter

Vr Radial velocity
ZH Horizontal reflectivity
ZDR Differential reflectivity
φHV Differential phase
KDP Specific differential phase
ρhv Cross-correlation coefficient

QPE Quantitative precipitation estimation
HC Hydrometeor classification
MP Microphysical parameterization scheme of model
SM Single-moment scheme
DM Double-moment scheme

WRF Weather research and forecasting model
WRF-ARW Advanced research weather research and forecasting model

MCS(s) Mesoscale convective system(s)
OSSE(s) Observing system simulation experiment(s)

DSD Drop size distribution
PSD Particle size distribution

q Mixing ratio
Nt Number concentration
W Water content
ρa Air density
ρw Water density
Dm Mass-weighted diameter
γx Percentage of melting

APRS Advanced Regional Prediction System
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Table A1. Cont.

Abbreviation/Acronym Explanation

CAPS Center for Analysis and Prediction of Storms
NSSL National Severe Storms Laboratory

J08 Represents the article of Jung et al., (2008)
J10 Represents the article of Jung et al., (2010)
Z21 Represents the article of Zhang et al., (2021)
xb Background vector in the cost function
x Analysis vector in the cost function
yo Observation vector in the cost function
B Background error covariance matrix of model
R Observation error covariance matrix of model

H(x) Forward operator
Jc(x) Constraints in the cost function
RUC Rapid Update Cycle
AGL Above ground level

u Horizontal wind in u-direction
v Horizontal wind in v-direction
w Vertical velocity
θ Perturbation potential temperature
qc Mixing ratio of cloud water
qi Mixing ratio of cloud ice
qr Mixing ratio of rain water
qs Mixing ratio of snow
qh Mixing ratio of hail
qg Mixing ratio of graupel
Nc Number concentration of cloud water
Ni Number concentration of cloud ice
Nr Number concentration of rain water
Ns Number concentration of snow
Nh Number concentration of hail
Ng Number concentration of graupel

VCP Volume coverage pattern
WSR-88D Weather surveillance radar—1988 Doppler
RMSE(s) Root mean square error(s)
ExpVrZh Experiment on assimilation of Vr and ZH

ExpVrZhZdr Experiment on assimilation of Vr, ZH, and ZDR
ExpVrZhKdp Experiment on assimilation of Vr, ZH, and KDP
ExpVrZhRhv Experiment on assimilation of Vr, ZH, and ρhv
ExpVrZhPol Experiment on assimilation of Vr, ZH, ZDR, KDP, and ρhv

CPA Convective precipitation area
SPA Stratiform precipitation area
LWC Liquid water content
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